Go Back  Offshoreonly.com > Technical > General Q & A
Marine Lubrication >

Marine Lubrication

Notices

Marine Lubrication

Thread Tools
 
Old 07-15-2005, 08:45 PM
  #21  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

Synthetic oil costs too much? Read this..

Many of you are curious as to pricing structures for synthetics.

Here is a cost model making the assumption that you are a blender buying all of your materials from a supplier, and you are also buying in 55 gal drum quantities (or more). Now these are appromomate costs and will very with market price and supplier.

Case 1: For a 80/20 full synthetic per quart.

1. 80% PAO - $1.60
2. 20% TMP Ester - $0.70
----------------------------------------
Cost of base oil: $2.30

3. Additive pkg. $1.27

Total Oil: $3.57/qt.

Add to this packaging, advertising, support staff, chemistry research, testing and development,
and GOVERMENT REGULATIONS, you need to sell this quart for approx. $5.36/qt. or more.


.

Last edited by Hydrocruiser; 07-17-2005 at 07:54 PM.
Hydrocruiser is offline  
Old 07-15-2005, 08:46 PM
  #22  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

Recent most Mobil/Exxon venture last year:

http://www.exxonmobilfamily.com/Corp..._nr_040504.asp

Last edited by Hydrocruiser; 07-15-2005 at 09:00 PM.
Hydrocruiser is offline  
Old 07-15-2005, 08:57 PM
  #23  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

One of my reference books I picked up:

http://www.noria.com/secure/product_...p?catalogid=55
Hydrocruiser is offline  
Old 07-15-2005, 09:03 PM
  #24  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

I want you interested folks to read these last 2 pages so we can have intelligent conversations or entertain intelligent questions.
Hydrocruiser is offline  
Old 07-15-2005, 11:23 PM
  #25  
Registered
 
vandy021's Avatar
 
Join Date: Apr 2005
Location: Fort Wayne
Posts: 189
Likes: 0
Received 1 Like on 1 Post
Default Re: Marine Lubrication

The publicity I think moved all my red cap. I think it's all gone!!!
vandy021 is offline  
Old 07-16-2005, 09:50 AM
  #26  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

I was asked what advantages motorcycle oil has over car oil:

According to oil and bike manufacturers their motorcycle oils have superior wear protection, engine cleanliness, high-temperature stability, lower volatility/lower oil consumption and often better anti-corrosion performance.
Hydrocruiser is offline  
Old 07-16-2005, 06:11 PM
  #27  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

VIscosity Charts..left click to blow up
Attached Thumbnails Marine Lubrication-visc.jpg  
Hydrocruiser is offline  
Old 07-16-2005, 06:12 PM
  #28  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

Conversion factors;

http://www.bobistheoilguy.com/conversion.html
Hydrocruiser is offline  
Old 07-16-2005, 06:15 PM
  #29  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

What is oil analysis:


What is Oil Analysis?
Oil analysis involves sampling and analyzing oil for various properties and materials to monitor wear and contamination in an engine, transmission or hydraulic system. Sampling and analyzing on a regular basis establishes a baseline of normal wear and can help indicate when abnormal wear or contamination is occurring.
Oil analysis works like this. Oil that has been inside any moving mechanical apparatus for a period of time reflects the exact condition of that assembly. Oil is in contact with engine or mechanical components as wear metallic trace particles enter the oil. These particles are so small they remain in suspension. Many products of the combustion process also will become trapped in the circulating oil. The oil becomes a working history of the machine.
Particles caused by normal wear and operation will mix with the oil. Any externally caused contamination also enters the oil. By identifying and measuring these impurities, you get an indication of the rate of wear and of any excessive contamination. An oil analysis also will suggest methods to reduce accelerated wear and contamination.
The typical oil analysis tests for the presence of a number of different materials to determine sources of wear, find dirt and other contamination, and even check for the use of appropriate lubricants.



-Oil analysis can detect:
-Fuel dilution of lubrication oil
-Dirt contamination in the oil
-Antifreeze in the oil
-Excessive bearing wear
-Misapplication of lubricants
-Some wear is normal, but abnormal levels of a particular material can give an early warning of impending problems and possibly prevent a major breakdown.


Early detection can:
Reduce repair bills
Reduce catastrophic failures
Increase machinery life
Reduce non-scheduled downtime
Early detection with oil analysis can allow for corrective action such as repairing an air intake leak before major damage occurs. Probably one of the major advantages of an oil analysis program is being able to anticipate problems and schedule repair work to avoid downtime during a critical time of use.



Physical Tests
Some of the physical properties tested for and usually included in analysis of an oil sample are:

-Antifreeze forms a gummy substance that may reduce oil flow. It leads to high oxidation, oil thickening, high acidity, and engine failure if not corrected.
-Fuel dilution thins oil, lowers lubricating ability, and might drop oil pressure. This usually causes higher wear.
-Oxidation measures gums, varnishes and oxidation products. High oxidation from oil used too hot or too long can leave sludge and varnish deposits and thicken the oil.
-Total base number generally indicates the acid-neutralizing capacity still in the lubricant.
-Total solids include ash, carbon, lead salts from gasoline engines, and oil oxidation.
-Viscosity is a measure of an oil's resistance to flow. Oil may thin due to shear in multi-viscosity oils or by dilution with fuel. Oil may thicken from oxidation when run too long or too hot. Oil also may thicken from contamination by antifreeze, sugar and other materials

Last edited by Hydrocruiser; 07-17-2005 at 07:56 PM.
Hydrocruiser is offline  
Old 07-16-2005, 06:15 PM
  #30  
Gold Member
Gold Member
Thread Starter
 
Hydrocruiser's Avatar
 
Join Date: May 2004
Posts: 5,762
Likes: 0
Received 1 Like on 1 Post
Arrow Re: Marine Lubrication

Metal Tests..from bob's site
Some of the metals tested for and usually included in analysis of an oil sample and their potential sources are:


Aluminum (Al): Thrust washers, bearings and pistons are made of this metal. High readings can be from piston skirt scuffing, excessive ring groove wear, broken thrust washers, etc.
Boron, Magnesium, Calcium, Barium, Phosphorous, and Zinc: These metals are normally from the lubricating oil additive package. They involve detergents, dispersants, extreme-pressure additives, etc.
Chromium (CR): Normally associated with piston rings. High levels can be caused by dirt coming through the air intake or broken rings.
Copper (CU), Tin: These metals are normally from bearings or bushings and valve guides. Oil coolers also can contribute to copper readings along with some oil additives. In a new engine these results will normally be high during break-in, but will decline in a few hundred hours.
Iron (Fe): This can come from many places in the engine such as liners, camshafts, crankshaft, valve train, timing gears, etc.
Lead (Pb): Use of regular gasoline will cause very high test results. Also associated with bearing wear, but fuel source (leaded gasoline) and sampling contamination (use of galvanized containers for sampling) are critical in interpreting this metal.
Silicon (Si): High readings generally indicate dirt or fine sand contamination from a leaking air intake system. This would act as an abrasive, causing excessive wear. Silicon is also used as a anti-foam agent in some oils. more on silicon
Sodium (Na): High readings of this metal normally are associated with a coolant leak, but can be from an oil additive package.
Taking an Oil Sample
It is important to get an oil sample that is representative of all of the oil in the machine. Remember, your analysis will be based only on the sample that you send in for analysis. Always have the oil hot and thoroughly mixed before sampling. Handle hot drained oil with care — it could cause serious burns.
The easiest way to obtain a sample may be when the oil is being drained for an oil change. Sampling at this time usually involves letting some of the oil drain and then catching a sample in an appropriate container.

Samples also can be obtained without draining oil by suctioning out through plastic tubing routed down into the oil reservoir.

In any case, it is important to have an appropriate container and follow sampling directions thoroughly. Remember, many of the tests are for measuring materials on a parts per million basis, so safe, effective sampling is needed.



Cost and Convenience
Cost of oil analysis will vary according to the laboratory and extent of the analysis. Typical charges are $10 to $30 per analysis. The expense easily can be justified if it alerts the owner of a major problem that can be corrected and will help prevent downtime when the machine is needed.
Several companies have developed oil analysis kits that make oil analysis convenient. These kits include the sample bottles, suction pump and tubing, and possibly a pre-addressed, postage-paid mailing container.

The reasonable cost and convenience of oil analysis for use makes it another management tool that should be considered by anyone wanting to do preventive maintenance. .



Results
Results of the laboratory analysis are typically returned in two to seven days after the lab receives the sample. Results are returned to the owner for review. The laboratory may note when the analysis shows an abnormal condition and issue a caution or recommendation accordingly (Figure 1).
A typical analysis report is included in Table I. It shows how detection can predict engine problems. Other typical recommendations might be:



Example 1: Bearing metals indicate wear Inspect all bearing areas for wear Resample at 1/2 interval
Example 2: Unit is in satisfactory condition Resample at normal interval
Example 3: Abrasion indicated Inspect air filtration system Upper cylinder wear indicated Excessive fuel dilution Resample at 1/2 interval
Optimum Maintenance Interval
Most maintenance experts realize the oil change intervals for both engines and transmissions are decided by the "average need." No two pieces of equipment have the same preventive maintenance needs. Each machine has different imperfections and is used under different conditions. Operators doing smaller or lighter jobs can cause different conditions on engines and transmission wear than those that occur during more extended use. When using oil analysis to determine maintenance intervals, there is little guesswork. Records show that some equipment can safely run two or three times longer than recommended intervals. The oil analysis may show that you are changing the oil more often than necessary — or not often enough.
By eliminating too frequent oil changes, you reduce the cost for oil and servicing and also reduce the amount of used oil to deal with. This is an important pollution prevention method — reducing the source!

Oil sample analysis saves you repair and maintenance dollars, has the potential to reduce used oil and increases resale value of equipment.

These are average numbers used but depending on your type of equipment may be higher or lower. Most reports have charts listed on the back to explain the severity of that component in ppm.

Table I. Engine problems predicted with oil analysis.

--------------------------------------------------------------------------------

Indicator Acceptable Levels Engine Problem What to Check

--------------------------------------------------------------------------------

Silicon (Si) and
Aluminum (Al) 10 to 30 ppm Dirt ingestion Air intake system, oil filter plugging, oil filler cap and breather, valve covers, oil supply
Iron (Fe) 100 to 200 ppm Wear of cylinder liner, valve and gear train, oil pump, rust in system Excessive oil consumption, abnormal engine noise,performance problems, oil pressure, abnormal operating temperatures, stuck/broken piston rings
Chromium (CR) 10 to 30 ppm Piston ring wear Excessive oil blow-by and oil consumption, oil degradation
Copper (CU) 10 to 50 ppm Bearings and bushings wear, oil cooler passivating,radiator corrosion Coolant in engine oil, abnormal noise when operating at near stall speed
Lead (Pb)* 40 to 100 ppm Bearing corrosion Extended oil change intervals
Copper (CU) and
Lead (Pb)* 10 to 50 ppm Bearing lining wear Oil pressure, abnormal engine noise, dirt being ingested in air intake, fuel dilution, extended oil drain intervals
Aluminum (Al) 10 to 30 ppm Piston and piston thrust bearing wear Blow-by gases, oil consumption, power loss, abnormal engine noise
Silver and
Tin 2 to 5 ppm
10 to 30 ppm Wear of bearings Excessive oil consumption, abnormal engine noise, loss in oil pressure
Viscosity Change
Lack of lubrication Fuel dilution, blow-by gases, oil oxidation, carburetor choke, ignition timing, injectors, injector pump, oil pressure
Water/Anti-freeze
Coolant leak or condensation Coolant supply, gasket sealed, hose connection, oil filler cap and breather

Last edited by Hydrocruiser; 07-17-2005 at 07:57 PM.
Hydrocruiser is offline  


Quick Reply: Marine Lubrication


Contact Us - Archive - Advertising - Cookie Policy - Privacy Statement - Terms of Service

Copyright © 2024 MH Sub I, LLC dba Internet Brands. All rights reserved. Use of this site indicates your consent to the Terms of Use.